Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Nature ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658748

RESUMO

Cancer-specific TCF1+ stem-like CD8+ T cells can drive protective anticancer immunity through expansion and effector cell differentiation1-4; however, this response is dysfunctional in tumours. Current cancer immunotherapies2,5-9 can promote anticancer responses through TCF1+ stem-like CD8+ T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1+CD8+ T cell-mediated anticancer immunity. Here we demonstrate that tumour-derived prostaglandin E2 (PGE2) restricts the proliferative expansion and effector differentiation of TCF1+CD8+ T cells within tumours, which promotes cancer immune escape. PGE2 does not affect the priming of TCF1+CD8+ T cells in draining lymph nodes. PGE2 acts through EP2 and EP4 (EP2/EP4) receptor signalling in CD8+ T cells to limit the intratumoural generation of early and late effector T cell populations that originate from TCF1+ tumour-infiltrating CD8+ T lymphocytes (TILs). Ablation of EP2/EP4 signalling in cancer-specific CD8+ T cells rescues their expansion and effector differentiation within tumours and leads to tumour elimination in multiple mouse cancer models. Mechanistically, suppression of the interleukin-2 (IL-2) signalling pathway underlies the PGE2-mediated inhibition of TCF1+ TIL responses. Altogether, we uncover a key mechanism that restricts the IL-2 responsiveness of TCF1+ TILs and prevents anticancer T cell responses that originate from these cells. This study identifies the PGE2-EP2/EP4 axis as a molecular target to restore IL-2 responsiveness in anticancer TILs to achieve cancer immune control.

2.
Microbiol Spectr ; 11(6): e0176823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37831440

RESUMO

IMPORTANCE: The results from this study demonstrate the usefulness of a second-generation rapid antigen test for early detection of infection with the SARS-CoV-2 Omicron variant of concern (VoC) and reveal a higher sensitivity to detect immune escape Omicron VoCs compared to a first-generation rapid antigen test (89.4% vs 83.7%) in the high-risk group of healthcare workers.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pessoal de Saúde
3.
Nat Commun ; 14(1): 4906, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582777

RESUMO

Changes of mRNA 3'UTRs by alternative polyadenylation (APA) have been associated to numerous pathologies, but the mechanisms and consequences often remain enigmatic. By combining transcriptomics, proteomics and recombinant viruses we show that all tested strains of IAV, including A/PR/8/34(H1N1) (PR8) and A/Cal/07/2009 (H1N1) (Cal09), cause APA. We mapped the effect to the highly conserved glycine residue at position 184 (G184) of the viral non-structural protein 1 (NS1). Unbiased mass spectrometry-based analyses indicate that NS1 causes APA by perturbing the function of CPSF4 and that this function is unrelated to virus-induced transcriptional shutoff. Accordingly, IAV strain PR8, expressing an NS1 variant with weak CPSF binding, does not induce host shutoff but only APA. However, recombinant IAV (PR8) expressing NS1(G184R) lacks binding to CPSF4 and thereby also the ability to cause APA. Functionally, the impaired ability to induce APA leads to an increased inflammatory cytokine production and an attenuated phenotype in a mouse infection model. Investigating diverse viral infection models showed that APA induction is a frequent ability of many pathogens. Collectively, we propose that targeting of the CPSF complex, leading to widespread alternative polyadenylation of host transcripts, constitutes a general immunevasion mechanism employed by a variety of pathogenic viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Animais , Camundongos , Vírus da Influenza A/genética , Regiões 3' não Traduzidas/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Poliadenilação , Virulência/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
4.
JID Innov ; 3(4): 100204, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37533580

RESUMO

Innate lymphoid cells (ILCs) are gatekeepers in barrier organs, where they maintain tissue integrity and contribute to host defense as well as tissue repair. Inappropriate activation of ILCs, however, can lead to immunopathology with detrimental results. In this study, we focused on type 1 ILCs (ILC1s), which under inflammatory conditions constitute a poorly defined population with ambiguous functions. To delineate the properties of ILC1s in skin pathology, we used the well-established mouse model of imiquimod-induced psoriasis. Although ILC1s represented a minority among cutaneous lymphocytes in vehicle-treated controls, they rapidly expanded during early psoriasis and ultimately increased by >20-fold. This rapid increase was verified using two additional psoriasis models. Inflammatory ILC1s from imiquimod-treated skin were defined as CD44+, CXCR6+, and CD11b+ and substantially contributed to TNF-α and GM-CSF production, rendering them a potential candidate to shape the inflammatory infiltrate. In accordance with the psoriasis-specific microenvironment, skin ILC1s upregulated the IL-23 receptor whereas expression of the IL-12Rß2 subunit was diminished. As a consequence, neutralization of IL-12 only had a minor impact, whereas blocking IL-23 reduced both ILC1 abundance and disease severity. Together, our findings identify skin ILC1s as a likely player in early psoriasis and a prospective target for therapeutic approaches.

5.
Cancer Cell ; 41(8): 1498-1515.e10, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37451271

RESUMO

Type 1 conventional dendritic cells (cDC1) can support T cell responses within tumors but whether this determines protective versus ineffective anti-cancer immunity is poorly understood. Here, we use imaging-based deep learning to identify intratumoral cDC1-CD8+ T cell clustering as a unique feature of protective anti-cancer immunity. These clusters form selectively in stromal tumor regions and constitute niches in which cDC1 activate TCF1+ stem-like CD8+ T cells. We identify a distinct population of immunostimulatory CCR7neg cDC1 that produce CXCL9 to promote cluster formation and cross-present tumor antigens within these niches, which is required for intratumoral CD8+ T cell differentiation and expansion and promotes cancer immune control. Similarly, in human cancers, CCR7neg cDC1 interact with CD8+ T cells in clusters and are associated with patient survival. Our findings reveal an intratumoral phase of the anti-cancer T cell response orchestrated by tumor-residing cDC1 that determines protective versus ineffective immunity and could be exploited for cancer therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Receptores CCR7/metabolismo , Neoplasias/terapia , Antígenos de Neoplasias , Células Dendríticas
6.
Microorganisms ; 11(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375064

RESUMO

Immunocompromised individuals are at higher risk of developing protracted and severe COVID-19, and understanding individual disease courses and SARS-CoV-2 immune responses in these individuals is of the utmost importance. For more than two years, we followed an immunocompromised individual with a protracted SARS-CoV-2 infection that was eventually cleared in the absence of a humoral neutralizing SARS-CoV-2 antibody response. By conducting an in-depth examination of this individual's immune response and comparing it to a large cohort of convalescents who spontaneously cleared a SARS-CoV-2 infection, we shed light on the interplay between B- and T-cell immunity and how they interact in clearing SARS-CoV-2 infection.

7.
Cell Mol Gastroenterol Hepatol ; 16(2): 201-221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37054914

RESUMO

BACKGROUND & AIMS: A single hepatitis B virus (HBV) particle is sufficient to establish chronic infection of the liver after intravenous injection, suggesting that the virus targets hepatocytes via a highly efficient transport pathway. We therefore investigated whether HBV uses a physiological liver-directed pathway that supports specific host-cell targeting in vivo. METHODS: We established the ex vivo perfusion of intact human liver tissue that recapitulates the liver physiology to investigate HBV liver targeting. This model allowed us to investigate virus-host cell interactions in a cellular microenvironment mimicking the in vivo situation. RESULTS: HBV was rapidly sequestered by liver macrophages within 1 hour after a virus pulse perfusion but was detected in hepatocytes only after 16 hours. We found that HBV associates with lipoproteins in serum and within machrophages. Electron and immunofluorescence microscopy corroborated a co-localization in recycling endosomes within peripheral and liver macrophages. Recycling endosomes accumulated HBV and cholesterol, followed by transport of HBV back to the cell surface along the cholesterol efflux pathway. To reach hepatocytes as final target cells, HBV was able to utilize the hepatocyte-directed cholesterol transport machinery of macrophages. CONCLUSIONS: Our results propose that by binding to liver targeted lipoproteins and using the reverse cholesterol transport pathway of macrophages, HBV hijacks the physiological lipid transport pathways to the liver to most efficiently reach its target organ. This may involve transinfection of liver macrophages and result in deposition of HBV in the perisinusoidal space from where HBV can bind its receptor on hepatocytes.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/fisiologia , Hepatócitos/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Lipídeos
8.
J Hepatol ; 79(1): 150-166, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36870611

RESUMO

BACKGROUND & AIMS: Patients with chronic liver disease (CLD), including cirrhosis, are at increased risk of intractable viral infections and are hyporesponsive to vaccination. Hallmarks of CLD and cirrhosis include microbial translocation and elevated levels of type I interferon (IFN-I). We aimed to investigate the relevance of microbiota-induced IFN-I in the impaired adaptive immune responses observed in CLD. METHODS: We combined bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver injury with vaccination or lymphocytic choriomeningitis virus infection in transgenic mice lacking IFN-I in myeloid cells (LysM-Cre IFNARflox/flox), IFNAR-induced IL-10 (MX1-Cre IL10flox/flox) or IL-10R in T cells (CD4-DN IL-10R). Key pathways were blocked in vivo with specific antibodies (anti-IFNAR and anti-IL10R). We assessed T-cell responses and antibody titers after HBV and SARS-CoV-2 vaccinations in patients with CLD and healthy individuals in a proof-of-concept clinical study. RESULTS: We demonstrate that BDL- and CCL4-induced prolonged liver injury leads to impaired T-cell responses to vaccination and viral infection in mice, subsequently leading to persistent infection. We observed a similarly defective T-cell response to vaccination in patients with cirrhosis. Innate sensing of translocated gut microbiota induced IFN-I signaling in hepatic myeloid cells that triggered excessive IL-10 production upon viral infection. IL-10R signaling in antigen-specific T cells rendered them dysfunctional. Antibiotic treatment and inhibition of IFNAR or IL-10Ra restored antiviral immunity without detectable immune pathology in mice. Notably, IL-10Ra blockade restored the functional phenotype of T cells from vaccinated patients with cirrhosis. CONCLUSION: Innate sensing of translocated microbiota induces IFN-/IL-10 expression, which drives the loss of systemic T-cell immunity during prolonged liver injury. IMPACT AND IMPLICATIONS: Chronic liver injury and cirrhosis are associated with enhanced susceptibility to viral infections and vaccine hyporesponsiveness. Using different preclinical animal models and patient samples, we identified that impaired T-cell immunity in BDL- and CCL4-induced prolonged liver injury is driven by sequential events involving microbial translocation, IFN signaling leading to myeloid cell-induced IL-10 expression, and IL-10 signaling in antigen-specific T cells. Given the absence of immune pathology after interference with IL-10R, our study highlights a potential novel target to reconstitute T-cell immunity in patients with CLD that can be explored in future clinical studies.


Assuntos
COVID-19 , Interferon Tipo I , Camundongos , Animais , Interleucina-10 , SARS-CoV-2 , Camundongos Transgênicos , Cirrose Hepática , Camundongos Endogâmicos C57BL
9.
Microbiol Spectr ; 11(1): e0316522, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36622140

RESUMO

The ability of antibodies to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important correlate of protection. For routine evaluation of protection, however, a simple and cost-efficient anti-SARS-CoV-2 serological assay predictive of serum neutralizing activity is needed. We analyzed clinical epidemiological data and blood samples from two cohorts of health care workers in Barcelona and Munich to compare several immunological readouts for evaluating antibody levels that could be surrogates of neutralizing activity. We measured IgG levels against SARS-CoV-2 spike protein (S), its S2 subunit, the S1 receptor binding domain (RBD), and the full length and C terminus of nucleocapsid (N) protein by Luminex, and against RBD by enzyme-linked immunosorbent assay (ELISA), and assessed those as predictors of plasma surrogate-neutralizing activity measured by a flow cytometry assay. In addition, we determined the clinical and demographic factors affecting plasma surrogate-neutralizing capacity. Both cohorts showed a high positive correlation between IgG levels to S antigen, especially to RBD, and the levels of plasma surrogate-neutralizing activity, suggesting RBD IgG as a good correlate of plasma neutralizing activity. Symptomatic infection, with symptoms such as loss of taste, dyspnea, rigors, fever and fatigue, was positively associated with anti-RBD IgG positivity by ELISA and Luminex, and with plasma surrogate-neutralizing activity. Our serological assays allow for the prediction of serum neutralization activity without the cost, hazards, time, and expertise needed for surrogate or conventional neutralization assays. Once a cutoff is established, these relatively simple high-throughput antibody assays will provide a fast and cost-effective method of assessing levels of protection from SARS-CoV-2 infection. IMPORTANCE Neutralizing antibody titers are the best correlate of protection against SARS-CoV-2. However, current tests to measure plasma or serum neutralizing activity do not allow high-throughput screening at the population level. Serological tests could be an alternative if they are proved to be good predictors of plasma neutralizing activity. In this study, we analyzed the SARS-CoV-2 serological profiles of two cohorts of health care workers by applying Luminex and ELISA in-house serological assays. Correlations of both serological tests were assessed between them and with a flow cytometry assay to determine plasma surrogate-neutralizing activity. Both assays showed a high positive correlation between IgG levels to S antigens, especially RBD, and the levels of plasma surrogate-neutralizing activity. This result suggests IgG to RBD as a good correlate of plasma surrogate-neutralizing activity and indicates that serology of IgG to RBD could be used to assess levels of protection from SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática , Anticorpos Neutralizantes , Pessoal de Saúde , Imunoglobulina G , Anticorpos Antivirais
10.
J Hepatol ; 78(4): 717-730, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36634821

RESUMO

BACKGROUND & AIMS: We recently developed a heterologous therapeutic vaccination scheme (TherVacB) comprising a particulate protein prime followed by a modified vaccinia-virus Ankara (MVA)-vector boost for the treatment of HBV. However, the key determinants required to overcome HBV-specific immune tolerance remain unclear. Herein, we aimed to study new combination adjuvants and unravel factors that are essential for the antiviral efficacy of TherVacB. METHODS: Recombinant hepatitis B surface and core antigen (HBsAg and HBcAg) particles were formulated with different liposome- or oil-in-water emulsion-based combination adjuvants containing saponin QS21 and monophosphoryl lipid A; these formulations were compared to STING-agonist c-di-AMP and conventional aluminium hydroxide formulations. Immunogenicity and the antiviral effects of protein antigen formulations and the MVA-vector boost within TherVacB were evaluated in adeno-associated virus-HBV-infected and HBV-transgenic mice. RESULTS: Combination adjuvant formulations preserved HBsAg and HBcAg integrity for ≥12 weeks, promoted human and mouse dendritic cell activation and, within TherVacB, elicited robust HBV-specific antibody and T-cell responses in wild-type and HBV-carrier mice. Combination adjuvants that prime a balanced HBV-specific type 1 and 2 T helper response induced high-titer anti-HBs antibodies, cytotoxic T-cell responses and long-term control of HBV. In the absence of an MVA-vector boost or following selective CD8 T-cell depletion, HBsAg still declined (mediated mainly by anti-HBs antibodies) but HBV replication was not controlled. Selective CD4 T-cell depletion during the priming phase of TherVacB resulted in a complete loss of vaccine-induced immune responses and its therapeutic antiviral effect in mice. CONCLUSIONS: Our results identify CD4 T-cell activation during the priming phase of TherVacB as a key determinant of HBV-specific antibody and CD8 T-cell responses. IMPACT AND IMPLICATIONS: Therapeutic vaccination is a potentially curative treatment option for chronic hepatitis B. However, it remains unclear which factors are essential for breaking immune tolerance in HBV carriers and determining successful outcomes. Our study provides the first direct evidence that efficient priming of HBV-specific CD4 T cells determines the success of therapeutic hepatitis B vaccination in two preclinical HBV-carrier mouse models. Applying an optimal formulation of HBV antigens that activates CD4 and CD8 T cells during prime immunization provided the foundation for an antiviral effect of therapeutic vaccination, while depletion of CD4 T cells led to a complete loss of vaccine-induced antiviral efficacy. Boosting CD8 T cells was important to finally control HBV in these mouse models. Our findings provide important insights into the rational design of therapeutic vaccines for the cure of chronic hepatitis B.


Assuntos
Vacinas contra Hepatite B , Hepatite B Crônica , Camundongos , Humanos , Animais , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Antígenos do Núcleo do Vírus da Hepatite B , Linfócitos T CD4-Positivos , Imunização , Vacinação/métodos , Anticorpos Anti-Hepatite B , Linfócitos T CD8-Positivos , Camundongos Transgênicos , Adjuvantes Imunológicos , Antivirais
11.
Nat Cancer ; 4(1): 81-95, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36543907

RESUMO

Individuals with hematologic malignancies are at increased risk for severe coronavirus disease 2019 (COVID-19), yet profound analyses of COVID-19 vaccine-induced immunity are scarce. Here we present an observational study with expanded methodological analysis of a longitudinal, primarily BNT162b2 mRNA-vaccinated cohort of 60 infection-naive individuals with B cell lymphomas and multiple myeloma. We show that many of these individuals, despite markedly lower anti-spike IgG titers, rapidly develop potent infection neutralization capacities against several severe acute respiratory syndrome coronavirus 2 variants of concern (VoCs). The observed increased neutralization capacity per anti-spike antibody unit was paralleled by an early step increase in antibody avidity between the second and third vaccination. All individuals with hematologic malignancies, including those depleted of B cells and individuals with multiple myeloma, exhibited a robust T cell response to peptides derived from the spike protein of VoCs Delta and Omicron (BA.1). Consistently, breakthrough infections were mainly of mild to moderate severity. We conclude that COVID-19 vaccination can induce broad antiviral immunity including ultrapotent neutralizing antibodies with high avidity in different hematologic malignancies.


Assuntos
COVID-19 , Neoplasias Hematológicas , Linfoma de Células B , Mieloma Múltiplo , Humanos , Vacinas contra COVID-19 , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2 , Linfócitos T , Anticorpos Neutralizantes , Vacinação
12.
JHEP Rep ; 4(5): 100465, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35462860

RESUMO

Background & Aims: Increased sensitivity towards tumor necrosis factor (TNF)-induced cell death in virus-infected hepatocytes has revealed a so far unrecognized hepatocyte-intrinsic antiviral immune surveillance mechanism, for which no in vitro or ex vivo model is available. We aimed to establish precision-cut liver slices (PCLS) as a model system to study hepatocyte-intrinsic regulation of apoptosis. Methods: Preparation of PCLS from mouse and human liver tissue was optimized for minimal procedure-associated apoptosis. Functionality of liver cells in PCLS was characterized using extracellular flux analysis to determine mitochondrial respiration, and viral infection with recombinant adenovirus and lymphocytic choriomeningitis virus (LCMV) was used to probe for hepatocyte-intrinsic sensitivity towards apoptosis in PCLS. Apoptosis was detected by immunohistochemical staining for cleaved-caspase 3 and quantified by detection of effector caspase activity in PCLS. Results: We established an optimized protocol for preparation of PCLS from human and mouse models using agarose-embedding of liver tissue to improve precision cutting and using organ-protective buffer solutions to minimize procedure-associated cell death. PCLS prepared from virus-infected livers showed preserved functional metabolic properties. Importantly, in PCLS from adenovirus- and LCMV-infected livers we detected increased induction of apoptosis after TNF challenge ex vivo. Conclusion: We conclude that PCLS can be used as model system to ex vivo characterize hepatocyte-intrinsic sensitivity to cell death. This may also enable researchers to characterize human hepatocyte sensitivity to apoptosis in PCLS prepared from patients with acute or chronic liver diseases. Lay summary: Virus-infected hepatocytes in vivo show an increased sensitivity towards induction of cell death signaling through the TNF receptor. Studying this hepatocyte-intrinsic antiviral immune surveillance mechanism has been hampered by the absence of model systems that reciprocate the in vivo finding of increased apoptosis of virus-infected hepatocytes challenged with TNF. Herein, we report that an optimized protocol for generation of precision-cut liver slices can be used to study this hepatocyte-intrinsic surveillance mechanism ex vivo.

13.
Comput Struct Biotechnol J ; 20: 799-811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126884

RESUMO

Drug-repurposing has been instrumental to identify drugs preventing SARS-CoV-2 replication or attenuating the disease course of COVID-19. Here, we identify through structure-based drug-repurposing a dual-purpose inhibitor of SARS-CoV-2 infection and of IL-6 production by immune cells. We created a computational structure model of the receptor binding domain (RBD) of the SARS-CoV-2 spike 1 protein, and used this model for insilico screening against a library of 6171 molecularly defined binding-sites from drug molecules. Molecular dynamics simulation of candidate molecules with high RBD binding-scores in docking analysis predicted montelukast, an antagonist of the cysteinyl-leukotriene-receptor, to disturb the RBD structure, and infection experiments demonstrated inhibition of SARS-CoV-2 infection, although montelukast binding was outside the ACE2-binding site. Molecular dynamics simulation of SARS-CoV-2 variant RBDs correctly predicted interference of montelukast with infection by the beta but not the more infectious alpha variant. With distinct binding sites for RBD and the leukotriene receptor, montelukast also prevented SARS-CoV-2-induced IL-6 release from immune cells. The inhibition of SARS-CoV-2 infection through a molecule binding distal to the ACE-binding site of the RBD points towards an allosteric mechanism that is not conserved in the more infectious alpha and delta SARS-CoV-2 variants.

14.
Cell Rep ; 38(7): 110389, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172161

RESUMO

Liver sinusoidal endothelial cells (LSECs) are liver-resident antigen (cross)-presenting cells that generate memory CD8 T cells, but metabolic properties of LSECs and LSEC-primed CD8 T cells remain understudied. Here, we report that high-level mitochondrial respiration and constitutive low-level glycolysis support LSEC scavenger and sentinel functions. LSECs fail to increase glycolysis and co-stimulation after TLR4 activation, indicating absence of metabolic and functional maturation compared with immunogenic dendritic cells. LSEC-primed CD8 T cells show a transient burst of oxidative phosphorylation and glycolysis. Mechanistically, co-stimulatory IL-6 signaling ensures high FOXO1 expression in LSEC-primed CD8 T cells, curtails metabolic activity associated with T cell activation, and is indispensable for T cell functionality after re-activation. Thus, distinct immunometabolic features characterize non-immunogenic LSECs compared with immunogenic dendritic cells and LSEC-primed CD8 T cells with memory features compared with effector CD8 T cells. This reveals local features of metabolism and function of T cells in the liver.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Apresentação Cruzada/imunologia , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Interleucina-6/metabolismo , Fígado/citologia , Animais , Diferenciação Celular/genética , Respiração Celular , Células Endoteliais/citologia , Células Endoteliais/ultraestrutura , Glicólise , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Transcrição Gênica
15.
Nat Commun ; 13(1): 153, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013191

RESUMO

Anti-viral immunity continuously declines over time after SARS-CoV-2 infection. Here, we characterize the dynamics of anti-viral immunity during long-term follow-up and after BNT162b2 mRNA-vaccination in convalescents after asymptomatic or mild SARS-CoV-2 infection. Virus-specific and virus-neutralizing antibody titers rapidly declined in convalescents over 9 months after infection, whereas virus-specific cytokine-producing polyfunctional T cells persisted, among which IL-2-producing T cells correlated with virus-neutralizing antibody titers. Among convalescents, 5% of individuals failed to mount long-lasting immunity after infection and showed a delayed response to vaccination compared to 1% of naïve vaccinees, but successfully responded to prime/boost vaccination. During the follow-up period, 8% of convalescents showed a selective increase in virus-neutralizing antibody titers without accompanying increased frequencies of circulating SARS-CoV-2-specific T cells. The same convalescents, however, responded to vaccination with simultaneous increase in antibody and T cell immunity revealing the strength of mRNA-vaccination to increase virus-specific immunity in convalescents.


Assuntos
Vacina BNT162/imunologia , COVID-19/imunologia , Convalescença , Nucleocapsídeo/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/administração & dosagem , COVID-19/virologia , Citocinas/imunologia , Citocinas/metabolismo , Citometria de Fluxo/métodos , Seguimentos , Humanos , Imunoglobulina G/imunologia , Interleucina-2/imunologia , Interleucina-2/metabolismo , Cinética , SARS-CoV-2/fisiologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Fatores de Tempo , Vacinação/métodos
16.
Cell Rep ; 38(2): 110214, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34968416

RESUMO

T cell immunity is crucial for control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and has been studied widely on a quantitative level. However, the quality of responses, in particular of CD8+ T cells, has only been investigated marginally so far. Here, we isolate T cell receptor (TCR) repertoires specific for immunodominant SARS-CoV-2 epitopes restricted to common human Leukocyte antigen (HLA) class I molecules in convalescent individuals. SARS-CoV-2-specific CD8+ T cells are detected up to 12 months after infection. TCR repertoires are diverse, with heterogeneous functional avidity and cytotoxicity toward virus-infected cells, as demonstrated for TCR-engineered T cells. High TCR functionality correlates with gene signatures that, remarkably, could be retrieved for each epitope:HLA combination analyzed. Overall, our data demonstrate that polyclonal and highly functional CD8+ TCRs-classic features of protective immunity-are recruited upon mild SARS-CoV-2 infection, providing tools to assess the quality of and potentially restore functional CD8+ T cell immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , SARS-CoV-2/imunologia , Adulto , Células Cultivadas , Reações Cruzadas/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Epitopos Imunodominantes/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Masculino , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T Citotóxicos/imunologia
17.
Sci Immunol ; 6(65): eabf7235, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739338

RESUMO

Deficiency in X-linked inhibitor of apoptosis protein (XIAP) is the cause for X-linked lymphoproliferative syndrome 2 (XLP2). About one-third of these patients suffer from severe and therapy-refractory inflammatory bowel disease (IBD), but the exact cause of this pathogenesis remains undefined. Here, we used XIAP-deficient mice to characterize the mechanisms underlying intestinal inflammation. In Xiap−/− mice, we observed spontaneous terminal ileitis and microbial dysbiosis characterized by a reduction of Clostridia species. We showed that in inflamed mice, both TNF receptor 1 and 2 (TNFR1/2) cooperated in promoting ileitis by targeting TLR5-expressing Paneth cells (PCs) or dendritic cells (DCs). Using intestinal organoids and in vivo modeling, we demonstrated that TLR5 signaling triggered TNF production, which induced PC dysfunction mediated by TNFR1. TNFR2 acted upon lamina propria immune cells. scRNA-seq identified a DC population expressing TLR5, in which Tnfr2 expression was also elevated. Thus, the combined activity of TLR5 and TNFR2 signaling may be responsible for DC loss in lamina propria of Xiap−/− mice. Consequently, both Tnfr1−/−Xiap−/− and Tnfr2−/−Xiap−/− mice were rescued from dysbiosis and intestinal inflammation. Furthermore, RNA-seq of ileal crypts revealed that in inflamed Xiap−/− mice, TLR5 signaling was abrogated, linking aberrant TNF responses with the development of a dysbiosis. Evidence for TNFR2 signaling driving intestinal inflammation was detected in XLP2 patient samples. Together, these data point toward a key role of XIAP in mediating resilience of TLR5-expressing PCs and intestinal DCs, allowing them to maintain tissue integrity and microbiota homeostasis.


Assuntos
Inflamação/imunologia , Intestinos/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Receptor 5 Toll-Like/imunologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/imunologia , Animais , Células Dendríticas/imunologia , Disbiose/imunologia , Humanos , Imunidade Inata/imunologia , Camundongos , Camundongos Knockout , Celulas de Paneth/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/deficiência
18.
Viruses ; 13(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34835079

RESUMO

Immunity against hepatitis B virus (HBV) infection is complex and not entirely understood so far, including the decisive factors leading to the development of chronic hepatitis B. This lack of a mechanistic understanding of HBV-specific immunity is also caused by a limited number of suitable animal models. Here, we describe the generation of a recombinant adenovirus expressing an HBV 1.3-overlength genome linked to luciferase (Ad-HBV-Luc) allowing for precise analysis of the quantity of infected hepatocytes. This enables sensitive and close-meshed monitoring of HBV-specific CD8 T cells and the onset of anti-viral immunity in mice. A high dose of Ad-HBV-Luc developed into chronic hepatitis B accompanied by dysfunctional CD8 T cells characterized by high expression of PD1 and TOX and low expression of KLRG1 and GzmB. In contrast, a low dose of Ad-HBV-Luc infection resulted in acute hepatitis with CD8 T cell-mediated elimination of HBV-replicating hepatocytes associated with elevated sALT levels and increased numbers of cytotoxic HBV-specific CD8 T cells. Thus, the infectious dose was a critical factor to induce either acute self-limited or chronic HBV infection in mice. Taken together, the new Ad-HBV-Luc vector will allow for highly sensitive and time-resolved analysis of HBV-specific immune responses during acute and chronic infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Replicação Viral/imunologia , Adenoviridae/genética , Animais , Linfócitos T CD8-Positivos/metabolismo , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Hepatite B Crônica/virologia , Hepatócitos/imunologia , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Vaccines (Basel) ; 9(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34835264

RESUMO

Chronic hepatitis B affects more than 250 million individuals worldwide, putting them at risk of developing liver cirrhosis and liver cancer. While antiviral immune responses are key to eliminating hepatitis B virus (HBV) infections, insufficient antiviral immunity characterized by failure to eliminate HBV-infected hepatocytes is associated with chronic hepatitis B. Prophylactic vaccination against hepatitis B successfully established protective immunity against infection with the hepatitis B virus and has been instrumental in controlling hepatitis B. However, prophylactic vaccination schemes have not been successful in mounting protective immunity to eliminate HBV infections in patients with chronic hepatitis B. Here, we discuss the current knowledge on the development and efficacy of therapeutic vaccination strategies against chronic hepatitis B with particular emphasis on the pathogenetic understanding of dysfunctional anti-viral immunity. We explore the development of additional immune stimulation measures within tissues, in particular activation of immunogenic myeloid cell populations, and their use for combination with therapeutic vaccination strategies to improve the efficacy of therapeutic vaccination against chronic hepatitis B.

20.
Front Immunol ; 12: 713351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566969

RESUMO

Background: The cellular mechanisms involved in the lack of protective antibody response after hepatitis B vaccination are still rather unclear. Regulatory B cells (Breg) known as modulators of B-and T-cell responses may contribute to poor vaccine responsiveness. The current study aimed to investigate the role of regulatory B cells (Breg) in hepatitis B vaccine non-responsiveness after immunization with second- or third-generation hepatitis B vaccines. Method: We performed comparative phenotypic and frequency analysis of Breg subsets (CD24+CD27+ and CD24highCD38high Breg) in second-generation hepatitis B vaccine non-responders (2nd HBvac NR, n = 11) and responders (2nd HBvac R, n = 8) before (d0), on day 7 (d7), and 28 (d28) after booster vaccination. Cryopreserved peripheral blood mononuclear cells were stimulated ex vivo with a combination of CpG, PMA, and Ionomycin (CpG+P/I) and analyzed for numbers and IL-10 expression levels of Breg by flow cytometry-based analyses. Results: Flow cytometry-based analyses revealed elevated frequencies of CD24+CD27+ Breg at all time points and significantly higher frequencies of CD24highCD38high Breg on d0 (p = 0.004) and 28 (p = 0.012) in 2nd HBvac NR compared to 2nd HBvac R. In parallel, we observed significantly lower levels of CpG+P/I-induced IL-10 expression levels of CD24+CD27+ and CD24highCD38high Breg (d0: p < 0.0001; d7: p = 0.0004; d28: p = 0.0003 and d0: p = 0.016; d7: p = 0.016, respectively) in 2nd HBvac NR compared to 2nd HBvac R before and after booster immunization. Frequencies of CD24+CD27+ and CD24highCD38high Breg significantly decreased after third-generation hepatitis B booster vaccination (d7: p = 0.014; d28: p = 0.032 and d7: p = 0.045, respectively), whereas IL-10 expression levels of both Breg subsets remained stable. Conclusion: Here we report significantly higher frequencies of CD24highCD38high Breg in parallel with significantly lower IL-10 expression levels of CD24+CD27+ and CD24highCD38high Breg in 2nd HBvac NR compared to 2nd HBvac R. Anti-HBs seroconversion accompanied by a decrease of Breg numbers after booster immunization with a third-generation hepatitis B vaccine could indicate a positive effect of third-generation hepatitis B vaccines on Breg-mediated immunomodulation in hepatitis B vaccine non-responders.


Assuntos
Linfócitos B Reguladores/imunologia , Expressão Gênica , Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Interleucina-10/genética , Contagem de Linfócitos , ADP-Ribosil Ciclase 1/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Linfócitos B Reguladores/metabolismo , Antígeno CD24/metabolismo , Feminino , Citometria de Fluxo , Hepatite B/metabolismo , Hepatite B/prevenção & controle , Hepatite B/virologia , Anticorpos Anti-Hepatite B , Vacinas contra Hepatite B/administração & dosagem , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interleucina-10/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...